"""
"""
import subprocess
import warnings
import shutil
import sys
import enum
import operator
import os
import io
import numpy as np
from cached_property import cached_property
from homcloud.delegate import forwardable
import homcloud.alpha_filtration as alpha_filtration
import homcloud.rips as rips
import homcloud.bitmap
import homcloud.abstract_filtration as abstract_filtration
import homcloud.simplicial_levelset as simplicial_levelset
import homcloud.optvol as optvol
import homcloud.int_reduction as int_reduction
import homcloud.pdgm as pdgm
import homcloud.pdgm_format as pdgm_format
import homcloud.pict.optimal_one_cycle as pict_opt1cyc
import homcloud.optimal_one_cycle as opt1cyc
import homcloud.plot_PD_slice as plot_PD_slice
import homcloud.graph_optimal_one_cycle as graph_opt1cyc
from homcloud.spatial_searcher import SpatialSearcher
from .distance_transform import distance_transform
from .histogram import HistoSpec, SliceHistogram
from .optimal_volume import OptimalVolume, StableVolume
from .exceptions import VolumeNotFound
from .bitmap_optimal_1_cycle import BitmapOptimal1Cycle
from .boundary_map_optimal_1_cycle import Optimal1Cycle
from .graph_optimal_1_cycle import GraphOptimal1Cycle
from .ph0_component import PH0Components
[docs]
class PDList(object):
"""Collection of 0th,1st,..,and q-th persitence diagrams.
In HomCloud, diagrams for all degrees coming from a filtration
are combined into a single file. This class is the interface to
the file.
Args:
file (string or file): The pathname to a diagram file
type (enum PDList.FileType): Type of diagram file. One of the following:
idiagram, pdgm, or None (autodetected)
cache (bool): Ignored (for backward compatibility)
negate (bool): Ignored (for backward compatibility)
"""
def __init__(self, file, filetype=None, cache=False, negate=False):
if isinstance(file, str):
self.path = file
self.reader = pdgm_format.PDGMReader.open(file)
else:
self.path = getattr(file, "name", None)
self.reader = pdgm_format.PDGMReader(file, self.path)
PDList.assert_not_idiagram(filetype, self.path)
def __repr__(self):
return "PDList(path=%s)" % self.path
[docs]
def close(self):
"""
Dispose PDList object and release resources.
"""
self.reader.close()
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
self.close()
[docs]
@enum.unique
class FileType(enum.Enum):
IDIAGRAM = "idipha"
PDGM = "pdgm"
@property
def pdgm_id(self):
return self.reader.pdgm_id
@staticmethod
def compute_pd(filtration, save_to, parallels, algorithm, save_suppl_info):
f = PDList.open_pdgm_file(save_to)
filtration.compute_pdgm(f, algorithm, save_suppl_info)
f.seek(0)
return PDList(f, PDList.FileType.PDGM)
@staticmethod
def open_pdgm_file(save_to):
if save_to is None:
return io.BytesIO()
else:
return open(save_to, "w+b")
[docs]
@staticmethod
def from_alpha_filtration(
pointcloud,
weight=False,
no_squared=None,
*,
squared=None,
subsets=False,
check_acyclicity=False,
algorithm=None,
parallels=1,
vertex_symbols=None,
save_to=None,
indexed=True,
save_suppl_info=True,
save_boundary_map=False,
periodicity=None,
save_phtrees=False,
output_filetype=None,
):
"""Compute PDList by using an alpha filtration from a point cloud.
Args:
pointcloud (numpy.ndarray): Point cloud data. Each row
represents a single point.
Only 2D or 3D pointclouds are available.
weight (bool): If False, the pointcloud has no weight. If True,
the last column of the pointcloud ndarray is regarded as
weights. Please note that the weight paramters of points
should be the square of their own radii.
squared (bool): By default, all birth/death times are squared.
If squared is False, all computed birth/death times are
not squared.
no_squared (bool): See `squared` parameter.
subsets (list[int] or bool or None):
This parameter is used to compute relative homology.
This parameter allows you to analyze the interspace structures
between two or more objects in your pointcloud.
If `subsets` is None, normal persistent homology is computed.
If `subsets` is a list of integers whose length is the same
as the number of points, the points are grouped
by the integers and the gaps in the points in the same
group is filled. The integer -1 in this list means
that the point does not belong to any group.
If subsets is True, the last column of `pointcloud` is regarded
as the list of group id.
check_acyclicity (bool):
Checks the acyclicity of each grouped points in subsets
if True. This parameter is used only if `subsets` parameter
is used.
algorithm (string or None): The name of the algorithm.
An appropriate algorithm is
automatically selected if None is given.
The following algorithms are available:
* "phat-twist"
* "phat-chunk-parallel"
* "dipha"
In many cases, the parameter should be `None`.
vertex_symbols (list[string] or None): The names of vertices.
The names are used to represent some simplices, such as
birth/death simplices or optimal volumes.
If None is given, vertices are automatically named by
"0", "1", "2", ...
parallels (int): The number of threads used for the computation.
This parameter is used only if "dipha" algorithm is used.
save_to (string): The file path which the computation result is
saved into. You can load the saved data by
``homcloud.interface.PDList(FILE_PATH)``.
Saving the result is recommended since the computation cost is
often expensive.
save_suppl_info (bool): Various supplimentary information is saved to
the file `save_to`. The default is True. This information is
required to show birth and death pixels and optimal volumes.
If you do not use such HomCloud's functionality and you want to
reduce the size of the file, please set the argument ``False``.
If False, only birth and death times are stored to the file.
save_boundary_map (bool):
The boundary map constructed by the given pointcloud is saved
if this parameter is True. The boundary map is used to
compute volume optimal cycles.
periodicity (tuple[tuple[float, float], tuple[float, float]], tuple[tuple[float, float], tuple[float, float], tuple[float, float]] or None):
Periodic boundary condition. Peridic boundary condition is not available for 2D alpha shape.
save_phtrees (bool): The PH-trees for (n-1)st PH is saved if True.
Use meth:`PD.load_phtrees` to load the PH trees.
Returns:
The :class:`PDList` object computed from the pointcloud.
Warn:
The pointcloud should be general position; that is, all combinations of three points should not be on a signle line, all combinations of four points should not be on a signle plane for 3D, all combinations of four points should not be on a single circle, and all combinations of five points should not be on a single sphere for 3D. If the input data does not satisfy general position condition, the alpha filtration cannot be computed correctly.
If you want to use peridic boundary condition, the pointcloud has sufficiently many points. If the number of points is small, alpha shape cannot be computed correctly.
Examples:
>>> import homcloud.interface as hc
>>> pointcloud = hc.example_data("tetrahedron")
>>> hc.PDList.from_alpha_filtration(pointcloud)
-> Returns a new PDList
"""
assert indexed
assert (save_phtrees and save_boundary_map) or (not save_phtrees)
PDList.assert_not_idiagram(output_filetype, save_to)
def squared_parameter():
if squared is not None:
return squared
if no_squared is not None:
return not no_squared
return True
squared = squared_parameter()
pointcloud = pointcloud.astype(float)
num_points = pointcloud.shape[0]
dim = pointcloud.shape[1] - int(weight is True) - int(subsets is True)
if isinstance(weight, np.ndarray):
pointcloud = np.hstack([pointcloud, weight.reshape(num_points, 1)])
weight = True
if isinstance(subsets, np.ndarray):
pointcloud = np.hstack([pointcloud, subsets.reshape(num_points, 1)])
subsets = True
alpha_shape = alpha_filtration.AlphaShape.build(pointcloud, dim, weight, subsets, periodicity)
if check_acyclicity:
alpha_shape.check_subsets_acyclicity()
if subsets:
alpha_shape.become_partial_shape()
filtration = alpha_shape.create_filtration(squared, vertex_symbols, save_boundary_map, save_phtrees)
return PDList.compute_pd(filtration, save_to, parallels, algorithm, save_suppl_info)
[docs]
@staticmethod
def from_bitmap_levelset(
array,
mode="sublevel",
type="bitmap",
algorithm=None,
parallels=1,
periodicity=None,
save_to=None,
indexed=True,
save_suppl_info=True,
save_boundary_map=False,
output_filetype=None,
):
"""
Computes superlevel/sublevel PDList from an n-dimensional bitmap.
Args:
array (numpy.ndarray): An n-dimensional array.
mode (string): The direction of the filtration.
"superlevel" or "sublevel".
type (string): An internal filtration type.
"bitmap" or "cubical".
You can change the internal file format by this parameter.
The file size of "bitmap" format is much smaller than
"cubical" and the computation for "bitmap" is
faster than "cubical".
algorithm (string, None): The name of the algorithm.
An appropriate algorithm is
automatically selected if None is given.
The following algorithms are available:
* "homccubes-0", "homccubes-1", "homccubes-2"
* "phat-twist"
* "phat-chunk-parallel"
* "dipha"
In many cases, the parameter should be `None`.
parallels (int): The number of threads used for the computation.
This parameter is used only if "dipha" algorithm is used.
periodicity (None, list of bool):
The list of booleans to specify the periodicity.
For example, if your array is 2D and you want to make
the array periodic only in 0-axis, you should give `[True, False]`.
Any periodic structure is not used if None.
save_to (string): The file path which the computation result is
saved into. You can load the saved data by
`homcloud.interface.PDList(FILE_PATH)`.
Saving the result is recommended since the computation cost is
often expensive.
indexed (bool): Always must be True.
save_suppl_info (bool): Various supplimentary information is saved to
the file `save_to`. The default is True. This information is
required to show birth and death pixels and optimal_1_cycles.
If you do not use such HomCloud's functionality and you want to
reduce the size of the file, please set the argument ``False``.
If False, only birth and death times are stored to the file.
save_boundary_map (bool):
The boundary map constructed by the given pointcloud is saved
if this parameter is True. The boundary map is used to
compute volume optimal cycles. This parameter is only available
if the type is "cubical".
Returns:
The :class:`PDList` object computed from the bitmap.
Examples:
>>> import numpy as np
>>> import homcloud.interface as hc
>>> bitmap = np.array([[1.5, 2.0, 0.5],
>>> [0.8, 4.1, 0.9],
>>> [1.3, 1.8, 1.3]])
>>> hc.PDList.from_bitmap_levelset(bitmap, "sublevel")
-> Returns PDList object for sublevel persistence diagrams
>>> hc.PDList.from_bitmap_levelset(bitmap, "superlevel",
>>> periodicity=[True, True])
-> Returns PDList object for superlevel PDList on a 2-torus
"""
assert indexed
PDList.assert_not_idiagram(output_filetype, save_to)
array = array.astype(float, copy=False)
if mode == "sublevel":
flip_sign = False
elif mode == "superlevel":
array = -array
flip_sign = True
else:
raise ValueError("unknown mode: {}".format(mode))
bitmap = homcloud.bitmap.Bitmap(array, flip_sign, periodicity, save_boundary_map)
if type == "cubical":
filt = bitmap.build_cubical_filtration()
else:
filt = bitmap.build_bitmap_filtration()
return PDList.compute_pd(filt, save_to, parallels, algorithm, save_suppl_info)
[docs]
@staticmethod
def from_bitmap_distance_function(
binary_pict,
signed=False,
metric="manhattan",
type="bitmap",
mask=None,
algorithm=None,
parallels=1,
save_to=None,
indexed=True,
save_suppl_info=True,
save_boundary_map=False,
output_filetype=None,
):
"""
This method is obsolete. Please use the combination of
:meth:`PDList.from_bitmap_levelset` and
:meth:`distance_transform` instead.
Computes erosion/dilation PDList from an n-dimensional bitmap.
In other words, this method computes the sublevel filtration
whose level function is the distance function.
Args:
binary_pict (numpy.ndarray): An n-dimensional boolean array.
signed (bool): The signed distance function is used
instead of the normal distance function if True.
metric (string): The metric. One of the followings:
* "manhattan"
* "chebyshev"
* "euclidean"
type (string): An internal filtration type.
"bitmap" or "cubical".
You can change the internal file format by this parameter.
The file size of "bitmap" format is much smaller than
"cubical". However, if you want to use the following
functionality, you must use "cubical" format.
* optimal volume/volume optimal cycle
* dependency check for a field
mask (numpy.ndarray or None): The mask bitmap.
algorithm (string, None): The name of the algorithm.
An appropriate algorithm is
automatically selected if None is given.
The following algorithms are available:
* "homccubes-0", "homccubes-1", "homccubes-2"
* "phat-twist"
* "phat-chunk-parallel"
* "dipha"
In many cases, the parameter should be `None`.
parallels (int): The number of threads used for the computation.
This parameter is used only if "dipha" algorithm is used.
save_to (string): The file path which the computation result is
saved into. You can load the saved data by
`homcloud.interface.PDList(FILE_PATH)`.
Saving the result is recommended since the computation cost is
often expensive.
save_boundary_map (bool):
The boundary map constructed by the given pointcloud is saved
if this parameter is True. The boundary map is used to
compute volume optimal cycles.
Returns:
The :class:`PDList` object computed from the bitmap.
"""
warnings.warn(
"interface.PDList.from_bitmap_distance_function is obsolete."
"Please use interaface.distance_transform and BitmapPHTreesPair.",
PendingDeprecationWarning,
)
assert output_filetype is None
return PDList.from_bitmap_levelset(
distance_transform(binary_pict, signed, metric, None, mask),
"sublevel",
type,
algorithm,
parallels,
None,
save_to,
indexed,
save_suppl_info,
save_boundary_map,
output_filetype,
)
[docs]
@staticmethod
def from_rips_filtration(
distance_matrix,
maxdim,
maxvalue=np.inf,
simplicial=False,
vertex_symbols=None,
algorithm=None,
parallels=1,
save_boundary_map=False,
save_graph=False,
save_cocycles=False,
save_to=None,
):
"""
Compute a PDList from a distance matrix by using Vietoris-Rips
filtrations.
Args:
distance_matrix (numpy.ndarary): KxK distance matrix.
When you use "ripser" as the algorithm, the datatype of the matrix is converted into float32 internally
since Ripser only supports float32.
maxdim (int): Maximal homology degree computed.
maxvalue (float): Maximal distance for constructing a filtration.
All longer edges do not apper in the constructed filtration.
simplicial (bool): If True, construct a simplicial complex for
:meth:`Pair.optimal_volume` (slow)
vertex_symbols (list[string] or None): The names of vertices.
The names are used to represent some simplices, such as
birth/death simplices or optimal volumes.
If None is given, vertices are automatically named by
"0", "1", "2", ...
algorithm: The name of the algorithm. An appropriate algorithm is
automatically selected if None is given.
The default is "ripser" for the normal case with `simplicial=False`.
If simplicial is False, "dipha" and "ripser" are available.
If simpliclal is True, "dipha", "phat-twist", "phat-chunk-parallel"
are availbale.
paralles: The number of threads for computation. This value is
used only if algorith is "dipha".
save_boundary_map (bool):
The boundary map constructed by the given distance matrix is saved
if this parameter is True. The boundary map is used to
compute volume optimal cycles. This option is only available
if `simplicial` is True.
save_graph (bool):
The graph structure of rips filtration is saved in .pdgm file.
save_to (string or None): The file path which the computation result is
saved into. You can load the saved data by
`homcloud.interface.PDList(FILE_PATH)`.
Saving the result is recommended since the computation cost is
often expensive.
Returns:
The :class:`PDList` object computed from the distance matrix.
"""
assert not (simplicial and save_graph)
dm = rips.DistanceMatrix(distance_matrix, maxdim, maxvalue, vertex_symbols)
if simplicial:
filtration = dm.build_simplicial_filtration(save_boundary_map)
else:
filtration = dm.build_rips_filtration(save_graph, save_cocycles)
return PDList.compute_pd(filtration, save_to, parallels, algorithm, True)
[docs]
@staticmethod
def from_simplicial_levelset(
simplicial_function,
vertex_symbols=None,
algorithm=None,
save_to=None,
save_boundary_map=False,
save_suppl_info=True,
):
"""
Compute a PDList from a simplicial level function.
Args:
simplicial_function: (dict[simplex, float]): the level of each simplex.
vertex_symbols (Option[list[str]]): The names of all vertices.
algorithm (Option[str]): The name of the algorithm.
save_to (Option[str]): The file path which the computation result is
saved into.
save_boundary_map (bool):
The boundary map is saved if this parameter is True.
The boundary map is used to compute volume optimal cycles.
Returns:
:class:`PDList`: The PDList computed from the boundary map.
Examples:
>>> import homcloud.interface as hc
>>>
>>> pdlist = hc.PDList.from_simplicial_levelset(
>>> {
>>> (0,): 1.0,
>>> (1,): 1.1,
>>> (2,): 1.1,
>>> (0, 1): 1.1,
>>> (1, 2): 1.1,
>>> (3,): 1.2,
>>> (2, 3): 1.2,
>>> (0, 3): 1.3,
>>> (1, 3): 1.4,
>>> (0, 1, 3): 1.5,
>>> },
>>> vertex_symbols=["a", "b", "c", "d"],
>>> save_boundary_map=True,
>>> )
>>> pd1 = pdlist[1]
>>> pd1.births
[1.4]
>>> pd1.deaths
[1.5]
>>> pd1.essential_births
[1.3]
"""
filtration = simplicial_levelset.SimplicialFiltration(simplicial_function, vertex_symbols, save_boundary_map)
return PDList.compute_pd(filtration, save_to, 1, algorithm, save_suppl_info)
[docs]
def save(self, dest):
"""Save the PDList into `dest`.
Args:
dest (string): The filepath which the diagram data is saved into.
"""
with open(dest, "wb") as destfile:
srcfile = self.reader.infile
srcfile.seek(0)
shutil.copyfileobj(srcfile, destfile)
[docs]
def dth_diagram(self, d, load_indexed_pairs=True):
"""Return `d`-th persistence diagram from PDList.
Args:
d (int): the degree of the diagram
load_indexed_pairs (bool): index information is loaded if True.
Otherwise, the information is not loaded. This parameter will
be helpful to reduce the loading time.
Returns:
The :class:`PD` object.
"""
return PD(self.path, pdgm.PDGM(self.reader, d, load_indexed_pairs))
__getitem__ = dth_diagram
[docs]
def invoke_gui_plotter(
self,
d,
x_range=None,
xbins=None,
y_range=None,
ybins=None,
colorbar={"type": "linear"},
title=None,
unit_name=None,
aspect="equal",
optimal_volume=False,
optimal_volume_options=None,
):
"""Invoke the GUI plotter.
Args:
d (int): The degree of the PD.
"""
def format_range(r):
return "[{}:{}]".format(r[0], r[1])
options = ["-d", str(d)]
if x_range:
options.extend(["-x", format_range(x_range)])
if xbins:
options.extend(["-X", str(xbins)])
if y_range:
options.extend(["-y", format_range(y_range)])
if ybins:
options.extend(["-Y", str(ybins)])
if colorbar["type"] == "linear":
pass
elif colorbar["type"] == "log":
options.append("-l")
elif colorbar["type"] == "loglog":
options.append("--loglog")
if "max" in colorbar:
options.extend(["--vmax", str(colorbar["max"])])
if title is not None:
options.extend(["--title", str(title)])
if unit_name is not None:
options.extend(["--unit-name", str(unit_name)])
options.extend(["--aspect", aspect])
if optimal_volume:
options.extend(["--optimal-volume", "on"])
subprocess.Popen([sys.executable, "-m", "homcloud.plot_PD_gui"] + options + [self.path])
[docs]
def bitmap_phtrees(self, degree):
"""
Read a :class:`BitmapPHTrees` object computed by
:meth:`BitmapPHTrees.for_bitmap_levelset`.
Args:
degree (int): The PD degree. 0 or (n-1).
Returns:
A :class:`BitmapPHTrees` object
"""
from .bitmap_phtrees import BitmapPHTrees
treedict = self.reader.load_simple_chunk("bitmap_phtrees", degree)
return BitmapPHTrees(treedict, self.reader.metadata["sign_flipped"])
def check_coefficient_problem(self):
pdgm = self.dth_diagram(0).pd
checker = int_reduction.build_checker(pdgm.input_dim, pdgm.boundary_map_chunk)
return checker.check()
@staticmethod
def assert_not_idiagram(output_filetype, path):
assert_message = "idiagram format is not available after 3.0"
assert output_filetype != PDList.FileType.IDIAGRAM, assert_message
if path is not None:
assert os.path.splitext(path)[1] != ".idiagram", assert_message
#: Obsolete, for backward compatibility
PDs = PDList
[docs]
@forwardable
class PD(object):
"""
The class for a single persistence diagram.
You can get the object of this class by :meth:`PDList.dth_diagram` or
:meth:`PDList.__getitem__`.
Attributes:
path (str): File path
degree (int): Degree of the PD
births (numpy.ndarray[num_of_pairs]): Birth times
deaths (numpy.ndarray[num_of_pairs]): Death times
birth_positions: Birth positions for birth-death pairs
death_positions: Death positions for birth-death pairs
essential_births (numpy.ndarray[num_of_ess_pairs]):
Birth times of essential birth-death pairs (birth-death pairs with
infinite death time)
essential_birth_positions:
Birth positions for essential birth-death pairs
"""
def __init__(self, path, pd):
self.path = path
self.pd = pd
__delegator_definitions__ = {
"pd": [
"degree",
"births",
"deaths",
"birth_positions",
"death_positions",
"essential_births",
"essential_birth_positions",
"sign_flipped",
"filtration_type",
"alpha_weighted",
"alpha_radii_squared",
"get_geometry_resolver",
]
}
def __repr__(self):
return "PD(path=%s, d=%d)" % (self.path, self.pd.degree)
@property
def pdgm_id(self):
return self.pd.pdgm_id
[docs]
def birth_death_times(self):
"""
Returns the birth times and death times.
Returns:
tuple[numpy.ndarray, numpy.ndarray]:
The pair of birth times and death times
"""
return self.pd.births, self.pd.deaths
[docs]
def histogram(
self,
x_range=None,
x_bins=128,
y_range=None,
y_bins=None,
):
"""
Returns the histogram of the PD.
This is the shortcut method of :meth:`HistoSpec.pd_histogram`
Args:
x_range (tuple[float, float] or None): The lower and upper range
of the bins on x-axis. If None is given, the range
is determined from the minimum and maximum of
the birth times and death times of all pairs.
y_range (int): The number of bins on x-axis.
y_range (tuple[float, float] or None): The lower and upper range
of the bins on y-axis. Same as `x_range` if None is given.
y_bins (int or None): The number of bins on y-axis.
Same as `x_bins` if None is given.
Returns:
The :class:`Histogram` object.
"""
return HistoSpec(x_range, x_bins, y_range, y_bins, self.pd).pd_histogram(self.pd)
[docs]
def load_phtrees(self):
"""
Load a PH trees from the diagram.
This method is available only for the (n-1)th diagram of an alpha filtration
of n-dimensional pointcloud.
You should compute the PH trees by :meth:`PDList.from_alpha_filtration`
with ``save_phtrees=True`` before using this method.
Returns:
The :class:`PHTrees` object of the (n-1)th PH.
"""
from .phtrees import PHTrees
if self.degree != self.pd.input_dim - 1:
raise (ValueError("The degree of PD must be the same as dim - 1 when PHTrees is used."))
if self.pd.pdgmreader.load_simple_chunk("phtrees") is None:
raise (
ValueError("phtrees must be saved (save_phtrees=True) when PDs are computed before PHTrees is used.")
)
return PHTrees.from_pdgm(self.pd)
[docs]
def pair(self, nth):
"""Returns `nth` birth-death pairs.
Args:
nth (int): Index of the pair.
Returns:
:class:`Pair`: The nth pair.
"""
return Pair(self, nth)
[docs]
def pairs(self):
"""Returns all pairs of the PD.
Returns:
list of :class:`Pair`: All birth-death pairs.
"""
return [self.pair(n) for n in range(self.pd.num_pairs)]
[docs]
def nearest_pair_to(self, x, y):
"""Returns a pair closest to `(x, y)`.
Args:
x (float): X (birth) coordinate.
y (float): Y (death) coordinate.
Returns:
:class:`Pair`: The cleosest pair.
"""
return self.spatial_searcher.nearest_pair(x, y)
@cached_property
def spatial_searcher(self):
return SpatialSearcher(self.pairs(), self.births, self.deaths)
[docs]
def pairs_in_rectangle(self, xmin, xmax, ymin, ymax):
"""Returns all pairs in the rectangle.
Returns all birth-death pairs whose birth time is in
the interval `[xmin, xmax]` and
whose death time is in `[ymin, ymax]`.
Args:
xmin (float): The lower range of birth time.
xmax (float): The upper range of birth time.
ymin (float): The lower range of death time.
ymax (float): The upper range of death time.
Returns:
list of :class:`Pair`: All birth-death pairs in the rectangle.
"""
return self.spatial_searcher.in_rectangle(xmin, xmax, ymin, ymax)
[docs]
@staticmethod
def empty():
"""Returns a persistence diagram which has no birth-death pairs.
Returns:
PD: A PD object with no birth-death pair.
"""
return PD(None, pdgm.empty_pd())
[docs]
@staticmethod
def from_birth_death(degree, births, deaths, ess_births=np.array([]), sign_flipped=False):
"""Returns a persistence diagram which birth and death times are given lists.
Args:
degree (int): The degree of the returned diagram
births (numpy.ndarray): The birth times
deaths (numpy.ndarray): The death times
ess_births (numpy.ndarray): The birth times of essential pairs
sign_flipped (bool): The sign is flipped if True
Returns:
PD: A PD object
"""
return PD(None, pdgm.SimplePDGM(degree, births, deaths, ess_births, sign_flipped))
[docs]
def slice_histogram(self, x1, y1, x2, y2, width, bins=100):
"""Returns 1D histogram of birth-death pairs in a thin strip.
This method computes a 1D hitogram of birth-death pairs
in the thin strip whose center line is
`(x1, y1) - (x2, y2)` and whose width is `width`.
Args:
x1 (float): The x(birth)-coordinate of the starting point.
y1 (float): The y(death)-coordinate of the starting point.
x2 (float): The x(birth)-coordinate of the ending point.
y2 (float): The y(death)-coordinate of the ending point.
width (float): Width of the strip.
bins (int): The number of bins.
Returns:
:class:`SliceHistogram`: The histogram.
"""
transl, mat = plot_PD_slice.transform_to_x_axis(np.array([x1, y1]), np.array([x2, y2]))
xy = np.dot(mat, np.array([self.births, self.deaths]) - transl.reshape(2, 1))
mask = (xy[0, :] >= 0) & (xy[0, :] <= 1) & (np.abs(xy[1, :]) < width / 2)
values, edges = np.histogram(xy[0, mask], bins, (0, 1))
return SliceHistogram(values, edges, x1, y1, x2, y2)
def optvol_optimizer_builder(self, cutoff_radius, num_retry, lp_solver):
if self.pd.boundary_map_chunk is None:
raise (
ValueError(
'Optimal/Stable volume requires boundary_map: "save_boundary_map=True"'
" is requried when a PD is computed."
)
)
if cutoff_radius is None:
return optvol.OptimizerBuilder(self.degree, self.pd.boundary_map_chunk, lp_solver)
else:
if self.filtration_type == "alpha":
return optvol.OptimizerBuilder.from_alpha_pdgm(self.pd, cutoff_radius, num_retry, lp_solver)
elif self.filtration_type == "cubical":
return optvol.OptimizerBuilder.from_cubical_pdgm(self.pd, cutoff_radius, num_retry, lp_solver)
else:
raise ValueError("cutoff is not available for {}".format(self.filtration_type))
def torch_tensor_births_deaths(self, torch_input):
if self.filtration_type == "bitmap":
return self.torch_tensor_births_deaths_bitmap(torch_input)
if self.filtration_type == "alpha":
return self.torch_tensor_births_deaths_alpha(torch_input)
raise ValueError("Now torch_tensor_births_deaths supports only bitmap or alpha filtrations")
def torch_tensor_births_deaths_bitmap(self, torch_bitmap):
births = torch_bitmap[np.array(self.birth_positions, dtype=int).transpose().tolist()]
deaths = torch_bitmap[np.array(self.death_positions, dtype=int).transpose().tolist()]
return births, deaths
def torch_tensor_births_deaths_alpha(self, torch_pointcloud):
import torch
import homcloud.geometry.torch_utils as torch_utils
def circumradius(simplex):
if len(simplex) == 1:
return torch.tensor(0.0)
torch_simplex = torch_pointcloud[simplex]
if len(simplex) == 2:
return torch_utils.edge_squared_circumradius(torch_simplex)
if len(simplex) == 3:
if self.pd.input_dim == 2:
return torch_utils.triangle_squared_circumradius_2d(torch_simplex)
if self.pd.input_dim == 3:
return torch_utils.triangle_squared_circumradius_3d(torch_simplex)
if len(simplex) == 4:
return torch_utils.tetrahedron_squared_circumradius_3d(torch_simplex)
assert not self.alpha_weighted, "weighted alpha filtration is not supported"
assert self.alpha_radii_squared, "non-squared alpha filtration is not supported"
index_to_simplex = self.pd.alpha_coord_resolver.index_to_simplex
births = torch.hstack([circumradius(index_to_simplex[index]) for index in self.pd.birth_indices])
deaths = torch.hstack([circumradius(index_to_simplex[index]) for index in self.pd.death_indices])
return births, deaths
[docs]
class Pair(object):
"""
A class representing a birth-death pair.
Attributes:
diagram (:class:`PD`): The diagram which the birth-death pair
belongs to.
"""
def __init__(self, diagram, nth):
self.diagram = diagram
self.nth = nth
def __iter__(self):
return (self.birth_time(), self.death_time()).__iter__()
[docs]
def birth_time(self):
"""Returns the birth time of the pair.
Returns:
float: The birth time
"""
return self.diagram.births[self.nth]
[docs]
def death_time(self):
"""Returns the death time of the pair.
Returns:
float: The death time
"""
return self.diagram.deaths[self.nth]
#: float: The birth time
birth = property(birth_time)
#: float: The death time
death = property(death_time)
@property
def birth_position(self):
"""Birth position for the birth-death pair"""
return self.diagram.birth_positions[self.nth]
birth_pos = property(operator.attrgetter("birth_position"))
""" Alias of :attr:`birth_position` """
@property
def death_position(self):
"""Death position for the birth-death pair"""
return self.diagram.death_positions[self.nth]
death_pos = property(operator.attrgetter("death_position"))
""" Alias of :attr:`death_position` """
@property
def birth_index(self):
return self.diagram.pd.birth_indices[self.nth]
@property
def death_index(self):
return self.diagram.pd.death_indices[self.nth]
@property
def birth_position_symbols(self):
"""list of string: Birth simplex for the birth-death pair by symbols. Only available for alpha filtrations."""
return self.diagram.pd.alpha_symbol_resolver.resolve_cell(self.birth_index)
@property
def death_position_symbols(self):
"""list of string: Death simplex for the birth-death pair by symbols. Only available for alpha filtrations."""
return self.diagram.pd.alpha_symbol_resolver.resolve_cell(self.death_index)
[docs]
def optimal_volume(
self,
cutoff_radius=None,
solver=None,
solver_options={},
constrain_birth=False,
num_retry=4,
integer_programming=False,
):
"""Return the optimal volume of the pair.
See the paper by `Obayashi (2018) <https://doi.org/10.1137/17M1159439>`_
if you want to know more about optimal volumes.
It is possible to get better results with stable volumes than with optimal volumes.
See :meth:`stable_volume` for the details of stable volumes.
Args:
cutoff_radius (float or None):
The cutoff radius. Simplices which are further from
the center of birth and death simplices than
`cutoff_radius` are ignored for the computation of
an optimal volume. You can reduce the computation time
if you set the `cutoff_radius` properly.
Too small `cutoff_radius` causes the failure of the computation.
If this argument is None, all simplices are not ignored.
solver (string or None): The name of the LP solver.
The default solver (coinor Clp) is selected if None is given.
solver_options (dict[str, Any]): Options for LP sovlers.
The options are forwarded to Pulp program.
constrain_birth (bool): Now this value is not used.
num_retry (int): The number of retry.
The cutoff_radius is doubled at every retrial.
integer_programming (bool): Integer constrains are used if True.
Integer constrains make the computation slower, but
possibly you get a better result.
Returns:
:class:`OptimalVolume`: The optimal volume.
Raises:
VolumeNotFound: Raised if the volume is not fould.
"""
lp_solver = optvol.find_lp_solver(solver, solver_options)
ovfinder = optvol.OptimalVolumeFinder(
self.diagram.optvol_optimizer_builder(cutoff_radius, num_retry, lp_solver)
)
result = ovfinder.find(self.birth_index, self.death_index)
self.check_optimal_volume_error(result)
return OptimalVolume(self, result.cell_indices, result)
def check_optimal_volume_error(self, result):
if isinstance(result, optvol.Failure):
result.pair = tuple(self)
raise VolumeNotFound(result.status, result.message)
[docs]
def stable_volume(
self,
threshold,
cutoff_radius=None,
solver=None,
solver_options={},
constrain_birth=False,
num_retry=4,
integer_programming=False,
):
"""Returns the stable volume of the pair.
See `Obayashi (2023) <https://doi.org/10.1007/s41468-023-00119-8>`_
if you want to know more about optimal volumes.
Args:
threshold (float): The noise bandwidth.
cutoff_radius (float or None):
The cutoff radius. Simplices which are further from
the center of birth and death simplices than
`cutoff_radius` are ignored for the computation of
an optimal volume. You can reduce the computation time
if you set the `cutoff_radius` properly.
Too small `cutoff_radius` causes the failure of the computation.
If this argument is None, all simplices are not ignored.
solver (string or None): The name of the LP solver.
The default solver (coinor Clp) is selected if None is given.
solver_options (dict[str, Any]): Options for LP sovlers.
The options are forwarded to Pulp program.
constrain_birth (bool): Ignored
num_retry (int): The number of retry.
The cutoff_radius is doubled at every retrial.
integer_programming (bool): Ignored.
Returns:
:class:`StableVolume`: The stable volume.
"""
lp_solver = optvol.find_lp_solver(solver, solver_options)
finder = optvol.TightenedVolumeFinder(
self.diagram.optvol_optimizer_builder(cutoff_radius, num_retry, lp_solver),
self.diagram.pd.index_to_level,
threshold,
)
result = finder.find(self.birth_index, self.death_index)
self.check_optimal_volume_error(result)
return StableVolume(self, result.cell_indices, threshold, result)
tightened_volume = stable_volume
[docs]
def optimal_1_cycle(self, weighted=False, torelance=None):
"""Returns the optimal (not volume-optimal) 1-cycle
corresponding to the birth-death pair.
You can calculate similar infomormation using :meth:`optimal_volume`, but optimal_volume
optimal_volume may be expensive, especiall for Vietoris-Rips filtration.
optimal_1_cycle can be computed at a lower cost than optimal_volume.
In general, an optimal volume gives better information about the birth-death pair, and
an optimal 1-cycle gives an approximation of the optimal volume.
The algorithm in optimal_1_cycle computes the minimal loop that includes a birth edge
(alpha, rips, abstract) or birth pixel (bitmap).
This method is available only when degree == 1.
If you want to compute optimal 1-cycle. You need to pass the following argument when computing
persistence diagrams.
* Vietoris-Rips filtration by :meth:`PDList.from_rips_filtration`: `save_graph=True`.
In this case, this method returns an object of :class:`GraphOptimal1Cycle`.
* Alpha filtration by :meth:`PDList.from_alpha_filtration`: `save_boundary_map=True`
In this case, this method returns an object of :class:`Optimal1Cycle`.
* Abstract filtration by :meth:`PDList.from_boundary_information`: `save_boundary_map=True`.
In this case, this method returns an object of :class:`Optimal1Cycle`.
* Bitmap filtration by :meth:`PDList.from_bitmap_levelset`: `save_suppl_info=True`
In this case, this method returns an object of :class:`BitmapOptimal1Cycle`.
Args:
weighted (bool): Use graph weight to find shortest loop. Only available for Vietoris-Rips filtration
torelance (None or float): Noise bandwidth parameter for Reconstructed Shortest Cycles.
Only available for Vietoris-Rips filtration.
See https://mtsch.github.io/Ripserer.jl/dev/generated/cocycles/#Reconstructed-Shortest-Cycles
if you know more about Reconstructed shortest cycles.
Returns:
:class:`BitmapOptimal1Cycle` | :class:`GraphOptimal1Cycle` | :class:`Optimal1Cycle` : The optimal 1-cycle.
Raises:
AssertionError: Raised if the filtration is not a bitmap filtration
or the degree of the pair is not 1.
"""
assert self.degree == 1
if self.diagram.pd.has_chunk("graph_weights"):
return self.graph_optimal_1_cycle(weighted, torelance)
elif self.diagram.filtration_type == "bitmap":
return self.bitmap_optimal_1_cycle()
else:
return self.boundary_map_optimal_1_cycle()
def bitmap_optimal_1_cycle(self):
finder = pict_opt1cyc.Finder(self.diagram.pd)
return BitmapOptimal1Cycle(finder.query_pair(self.birth_index, self.death_index))
def boundary_map_optimal_1_cycle(self):
return Optimal1Cycle(self, opt1cyc.search_on_chunk_bytes(self.diagram.pd.boundary_map_bytes, self.birth_index))
def graph_optimal_1_cycle(self, weighted=False, torelance=None):
if torelance is None:
return GraphOptimal1Cycle(
self, graph_opt1cyc.search(self.diagram.pd.graph_adjacent_matrix, self.birth_time(), weighted)
)
else:
return GraphOptimal1Cycle(
self,
graph_opt1cyc.search_with_cocycle(
self.diagram.pd.graph_adjacent_matrix,
self.representative_cocycle(),
self.birth_time(),
torelance,
weighted,
),
)
def __eq__(self, other):
return isinstance(other, Pair) and self.diagram == other.diagram and self.nth == other.nth
def __repr__(self):
return "Pair({}, {})".format(self.birth_time(), self.death_time())
[docs]
def lifetime(self):
"""The lifetime of the pair.
Returns:
float: The lifetime (death - birth) of the pair.
"""
return self.death_time() - self.birth_time()
def __hash__(self):
return id(self.diagram) + (int(self.nth) << 20)
def representative_cocycle(self):
return self.diagram.pd.representative_cocycle(self.degree, self.nth)
@property
def degree(self):
"""The degree of the pair."""
return self.diagram.degree
def ph0_components(self, epsilon=0.0):
assert self.diagram.filtration_type in ["alpha"]
return PH0Components(self, epsilon)